

November 6, 2012

David Sahli, P.E. Principle Engineer Minnesota Pollution Control Agency (MPCA) 520 LaFayette Road North St. Paul, MN 55155

Re: Final Amendment to Birch Point Road Community Assessment Report (CAR)

Dear David:

A Community Assessment Report (CAR) for the Birch Point Road Sanitary District was submitted to the Minnesota Pollution Control Agency (MPCA) and St. Louis County on November 22, 2011. This CAR provided information on existing individual sewage treatment systems (ISTS) and a detailed evaluation of a cluster wastewater collection, treatment, and subsurface discharge system for the 34 homes in the project area. A subsequent stakeholder meeting was held on January 12, 2012 where the CAR was discussed. This meeting was attended by representatives from the residents in the project area, Town of Grand Lake, St. Louis County, MPCA, Western Lakes Sanitary Sewer District (WLSSD), and MSA. The discussion at the meeting resulted in a request for additional work in evaluating individual sewage treatment systems (ISTS) for the 34 homes in the project area. This additional work was funded through grants provided by WLSSD and St. Louis County Environmental Services.

MSA and MATRIX Soil Systems, Inc prepared a scope of work for the additional work (two tasks) which was approved by WLSSD and the Town of Grand Lake. The two tasks were as follows:

TASK 1 Develop Table for On-Site Systems (by MATRIX Soil & System, Inc)

- 1. Perform desktop evaluation
 - a. Identify areas for potential replacement of onsite systems.
 - b. Identify parcels which can only use holding tanks (Type II);
 - c. Identify parcels with compliant ISTS systems (using existing sanitary survey and county information);
- 2. Perform site visit to confirm replacement area availability, site slope and cross-slope distance.
- 3. Identify parcels needing Types I, III, or IV systems and probable type for parcel.
- 4. Provide general description of system types that residents can understand with typical area requirements and typical construction, operation, and maintenance cost.
- 5. Assume minimum use of 3 bed rooms per lot for all parcels to account for future development and provide fair comparison to the system in the November 2011 CAR.
- 6. Provide summary table listing <u>for each lot</u> indicating
 - a. Information on existing table in November CAR plus;
 - b. Probable on-site system needed.

Offices in Illinois, Iowa, Minnesota, and Wisconsin

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

- c. Probable on-site area needed.
- d. Indicate if there are flow limits from each parcel based on the probable system identified.
- 7. Estimate cost for on-site systems for use in Task 2.

TASK 2 Develop and Compare Alternatives (MSA Professional Services)

- 1. Using information determined in Task 1 above develop a total capital and operation and maintenance cost for:
 - a. All on-site systems for 34 homes.
 - i. With holding tank waste disposal by hauling to WLSSD.
 - b. A hybrid system of on-site systems and smaller treatment system
 - i. With holding tank waste hauled by truck to treatment system at same location shown in the November CAR.
 - ii. Treatment system will be evaluated for flows of <5,000 gpd <u>only</u>.
- 2. Develop comparison table for capital, O&M and Present Worth Costs
 - a. Compare values from November CAR to two options above
 - b. Develop "Pro" and "Con" table to compare non-monetary items.
- 3. Develop <u>range</u> of user rate costs for each of the three alternatives.
 - a. Base rate on 1% interest rate, 30 year loan and 1.05 debt factor.
 - b. Assume 50% grant for construction only from MPCA
 - c. No grant for design of system.
 - d. Subordinate sanitary district will pay for construction and O&M of all 34 systems as this is required for 50% grant.
- 4. Write brief (5 to 10 pages) amendment to the CAR with MATRIX table from Task 1 and cost and comparison tables from Task 2

This CAR amendment letter details the results of Tasks 1 and 2 outlined above.

ON-SITE SYSTEM EVALUATION

MATRIX Soils & Systems, Inc. conducted the work outlined in Task 1 above. A detailed report including detailed tables for each individual system and individual site maps is provided as **Attachment 1** to this letter report. The attached report also indicates the number of existing compliant systems and an estimate of what probable types of systems would be required for replacement of the existing ISTS system with new compliant systems. The individual maps indicate probable locations available on each property for future replacements. A table is included in the attached report which summarizes the information collected. In some cases, the method of subsurface treatment at a property was not completely determined.

The purpose of the ISTS work was to gather information needed to evaluate options other than the cluster system indentified in the CAR. A summary of baseline data on the existing systems is presented in **Table 1**. Estimated system type replacement and operation and maintenance costs are listed on a table on the last page of the MATRIX Soils & Systems, Inc. report.

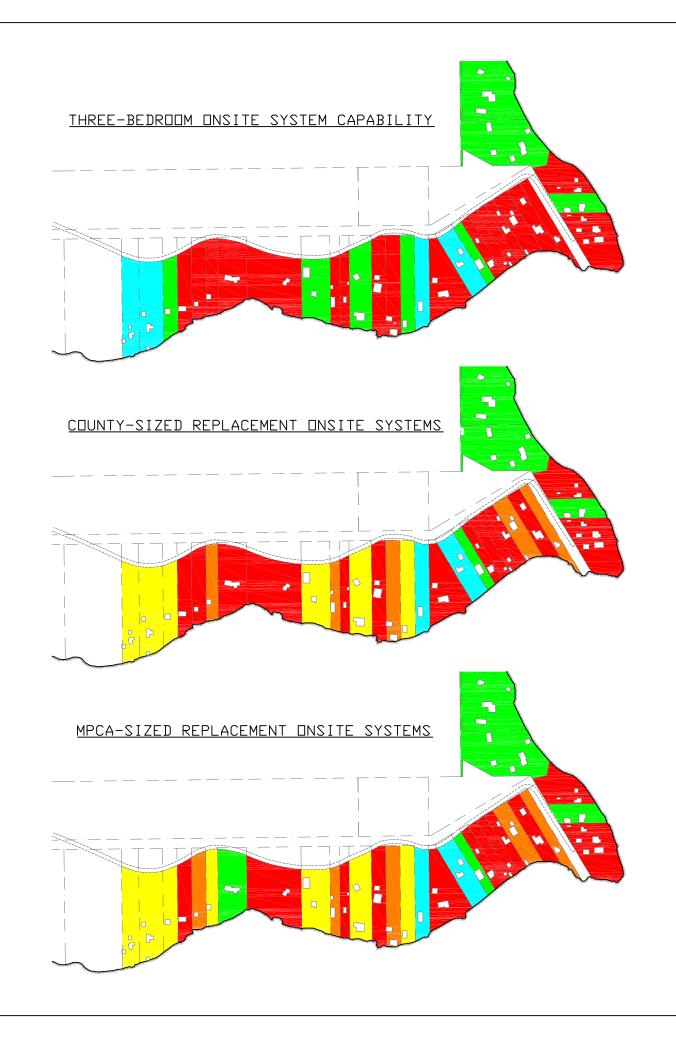
Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

Baseline ISTS information for Birch Point Road Project													
Item or ISTS System Type	Description	Existing	Future ISTS Replacement Type	Future ISTS Replacement Type	Future ISTS Replacement Type								
			MPCA Rules	St. Louis County Rules	3-Bedroom St. Louis County Rules								
1-bedroom home		11											
2-bedroom home		9											
3-bedroom home		14			34								
Seasonal Use		14											
Year Round Use		20											
Туре І	Mound	15	12	8	4								
Type II	Holding Tank	3	12	17	22								
Type III	Reduced Flow Type I	1	7	6	6								
Type IV	Registered Treatment Component	2	2	2	1								
Type V	Unregistered Treatment Component	1	1	1	1								
Other/Unknown	Other subsurface system	12											
Compliant System		7											
Non-Compliant Systems (1)		27											

Table 1
Baseline ISTS information for Birch Point Road Project

(1) Groundwater Protection Failure

The most important findings in the ISTS field and desktop evaluation are as follows:


• A significant number of properties do not have sufficient room for a future on-site system and would need to install a holding tank. Under MPCA rules, 9 properties would need to convert to holding tanks. Under St. Louis County rules, 14 properties would need to convert to holding tanks.

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

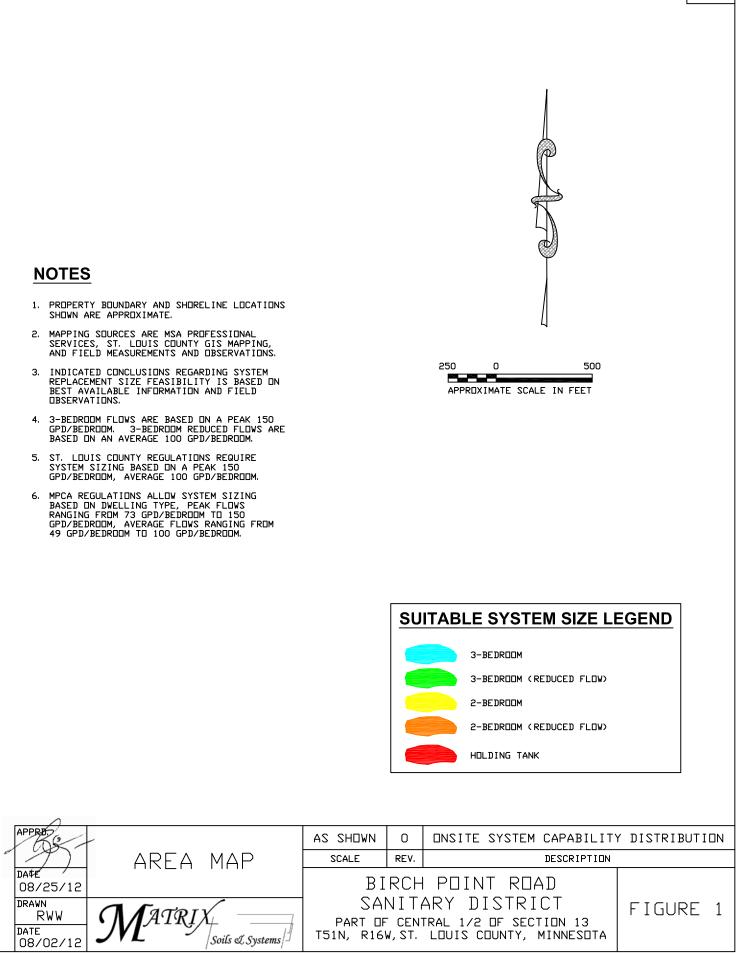

- 79 percent of the existing systems appear to be non-compliant for failing to protect groundwater. At some point these systems will need to be replaced.
- To allow all people in the project area to develop their property up to 3-bedroom capacity, a total of 22 holding tanks would be needed (greater than two-thirds of the homes). This can be used to compare costs to the cluster type system presented in the original CAR. The majority of one and two bedroom homes would need to convert to holding tanks in order to expand to a 3-bedroom home.

Figure 1 shows three color coded maps for system requirements for the 34 homes on Birch Point Road. The upper left hand color map shows the type of individual systems required if all properties were allowed to have three bedroom homes. The red color indicates those properties which would have to install a holding tank. The middle map in **Figure 1** shows the types of systems needed based on each resident staying with the existing bedroom size house and being limited to that house size in the future according to St. Louis County rules. Again, a significant number of homes would need to convert to holding tanks. The lower right hand map in **Figure 1** shows the types of systems needed based on each resident staying with the existing bedroom size house and being limited to that house size in the future according to MPCA rules. The color coded maps reflect the information provided in **Table 1** in a visual manner. The MATRIX Soils & Systems, Inc. report master table shows the probable future type system for each property owner, for the existing house size, and for a 3-bedroom house.

The data from the onsite evaluation gathered in Task 1was used in the alternatives evaluation presented in the next section.

- SHOWN ARE APPROXIMATE.
- DBSERVATIONS.

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

ALTERNATIVES EVALUATION

Based the amendment scope of work and results of the on-site system evaluation, the following alternatives were to be evaluated for comparison to the cluster system in the CAR:

- Alternative 1. Replace on-site systems, however no development beyond the existing number of bedrooms. For those with holding tanks, waste disposal by hauling to WLSSD. Based on the onsite evaluation, seven (7) properties are currently compliant with code. Thus, replacement of 27 systems is included in this alternative.
- Alternative 2. Replace on-site systems to allow for development of all properties to 3bedroom size. For those with holding tanks, waste disposal by hauling to WLSSD. Based on the onsite evaluation, three (3) properties have 3-bedroom homes currently compliant with code. Thus, replacement of 31 systems is included in this alternative.
- Alternative 3. Hybrid system consisting of hauling holding tank waste from present and future holding tanks to a <5,000 gallon per day (gpd) on-site treatment system and all other non-compliant systems being replaced with on-site systems. Seven (7) properties are currently compliant with code. Thus, replacement of 27 systems is included in this alternative. No development beyond existing dwelling size and number of bedrooms.

This option was only to be considered for a permitted flow to the treatment system of less than 5,000 gpd as under this flow, total Nitrogen removal is not required and more significant savings are possible. Under St. Louis County rules, this alternative is not practical as the permitted flow would be over 5,000 gpd. This is due to the fact that more holding tanks are required under St. Louis County rules. Thus, for the purposes of this report, it was assumed that MPCA codes could be used for the hybrid system approval by the County. Any increases in bedroom number would not allow use of this alternative due to permitted flows being larger than 5,000 gpd.

Tables for the cost of each of these alternatives were developed from the information in the onsite evaluation. In all cases it was assumed that St. Louis County rules would be followed. The County rules require Type I flows per bedroom to be used for sizing ISTS systems for all dwellings regardless of size. The onsite evaluation report for ISTS' includes a typical estimated replacement cost for different types of ISTS systems and an estimate of annual O&M costs for each type. These costs were used to develop alternative costs. In the case of trucking holding tank wastes from the homes to an on-site system, the hauling cost was estimated to be approximately half that of hauling to WLSSD. The Township might choose instead to buy its own hauling truck and do the hauling. Based on conversations with MPCA, the hybrid system described has not been used in the State of Minnesota.

The original CAR indicated that grinder stations would be used at each household. However, several Town Board members have indicated that grinder stations in a similar system around a nearby lake (Pike Lake) have not had the expected grinder pump equipment life which has

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

resulted in sooner than expected replacement of pump cores for many of the grinder stations. Thus, during the design phase, a septic tank effluent pump (STEP) system would also be considered. The STEP system replaces the grinder station with a combination tank containing a septic tank compartment and an effluent pump compartment. In general, the STEP option would require replacement of all the existing septic tank, but would not change the pressure sewer design. The benefit of the STEP system is that wastewater solids are not pumped into the pressure sewer or to the treatment system. This reduces clogging potential in the pressure sewer and lowers the load on the treatment system. In our experience the installed costs for STEP versus grinder stations are approximately the same. The STEP system would require the sanitary sub-district to monitor solids levels and pump solids out of the septic compartments on a scheduled basis (approximately every 5 years or 1/5th of the households each year).

Detailed cost estimates for each alternative are provided in **Attachment 2** of this letter report. **Table 2** is a summary of the alternative costs versus the costs from the CAR for a cluster system for all 34 homes and allowing development up to 3-bedroom homes.

Estimated Alternative Costs											
Alternative	Capital Cost	O&M Cost	20-Year								
		(1)	Present Worth								
Alternative 1											
ISTS replacements	\$478,000	\$98,000	\$1,710,000								
Existing bedroom capacity											
Alternative 2											
ISTS replacement	\$389,000	\$126,000	\$1,940,000								
3-bedroom capacity											
Alternative 3:											
Hybrid System	\$764,000	\$46,000	\$1,340,000								
Cluster System Alternative											
from CAR	¢1 220 000	¢22.000 (2)	¢1 590 000								
(Including Total N	\$1,330,000	\$22,000 (2)	\$1,580,000								
removal)											

Table 2 Estimated Alternative Cos

(1) Based on cost tables in MATRIX Soil & Systems Inc Report. Approximately \$197/pumpout for 2,000 gallon tank and \$167/pumpout for 1,000 gallon tank with transport to WLSSD.

(2) Higher cost than in original CAR to address potential use of STEP system. Assume \$2,000 per year cost for septic compartment pumpout per year.

Alternatives 1 and 2 have lower capital costs but higher O&M costs due to holding tank waste hauling to WLSSD. The present worth of both of these alternatives is higher than the cluster system alternative in the CAR. Alternative 3 has a lower capital cost and is the only alternative

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

with a lower cost than the cluster system alternative. **Table 3** lists advantages and disadvantages for each alternative.

Alternative Advantage and Disadvantage Table										
Alternative	Advantages	Disadvantages								
Alternative 1 ISTS replacements Existing bedroom capacity	• No collection system construction.	 Household bedroom size fixed at current size. Need to devote property to wastewater treatment. Weekly truck traffic on Birch Point Road. 								
Alternative 2 ISTS replacement 3-bedroom capacity	 Households can expand to 3-bedroom No collection system construction. Smaller property footprint than Alternative 1. 	 Majority holding tank system. Weekly truck traffic on Birch Point Road. 								
Alternative 3: Hybrid System	• No collection system construction.	 Household bedroom size fixed at current size. Weekly truck traffic on Birch Point Road. Difficult to operate smaller cluster treatment system due to batch loading by hauling trucks 								
Cluster System Alternative from CAR (Including Total N removal)	 Households can expand to 3-bedrooms. No hauling trucks in neighborhood. Grinder station or STEP system and/ pressure lines have small footprint on property. Homeowner does not have to maintain ISTS system on their property. 	 Need to obtain easements from all property owners for collection system. Need skilled operator for Total N removal system. 								

 Table 3

 Alternative Advantage and Disadvantage Table

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

USER RATE COMPARISON

User rates were determined in the CAR for the cluster system serving all 34 homes. The monthly user rate was \$138/mo/user including a 50% grant on the construction cost portion of the project. The estimated annual revenue requirement for the cluster system was estimated to be \$55,000 per year. This was based on a 2% interest rate on a 30-year loan from the MPCA. This revenue requirement is the sum of annual debt service cost for the loan on the construction cost and the annual O&M cost.

An evaluation of **Table 2** shows that the annual O&M costs for Alternatives 1 and 2 are above \$55,000/yr. Thus, these alternatives will automatically be above the user rates for a cluster system serving all the homes. A funding or user cost analysis for the on-site systems was not conducted because even if these alternatives were funded with a 100% construction grant to replace all the ISTS systems (i.e. no debt service at all), the operating cost is \$240/month for Alternative 1 (\$98,000/34/12) and \$308/month for Alternative 2 (\$126,000/34/12). Thus, there is no benefit in using public grant funding because the operating cost is so high and the grant funding does not apply to the operating cost.

The holding tank waste hauling costs in Alternatives 1 and 2 are estimates. It is possible that residents would lower their water use and thus waste production if there was a direct cost impact. In regards to less waste production per household, the operating costs for either Alternative 1 or 2 would need to be reduced to about \$50,000 (\$10,000 debt service and \$40,000 hauling cost) to be less than the cluster alternative. For the 3-bedroom alternative (Alternative 2) that means the hauling costs have to be less than 1/3 of the annual cost we estimated. Even at an O&M of \$50,000 per yr, the monthly cost is \$110/month for Alternative 2 versus \$126/month for the cluster system. If everyone was restricted to the existing bedrooms and the user target was \$100/month (Alternative 1), we would need an operating cost less than \$40,000/yr (\$10,000 debt service and \$30,000 hauling cost). Again the annual cost of hauling would have to be less than 1/3 of the that estimated in this CAR amendment.

The hauling frequency/volume could be adjusted down but the actual usage and annual pumpout cost is dependent individual home usage. For Alternative 2 (3-bedroom alternative) if the hauling rate from holding tanks is more than 12 pumpouts per year for year round residents or 3 per year for seasonal residents, then the cost will be equal to or more than the cluster system. For a 2,000 gallon holding tank this equates to a maximum usage of 66 gallons per day (about two loads of laundry or 15 minutes running a garden hose at full open). It is not considered practical to limit water usage to this low a rate. Therefore, Alternatives 1 and 2 are not considered to be cost effective and are eliminated from further consideration.

The hybrid system has an annual O&M cost estimated to be \$46,000/yr. A comparison of Alternative 3 to the cluster system for 34 homes is presented below. The original user rate of \$138/mo/user for the cluster system is lower because the assumed interest rate is1.0% (in accordance with the scope of work) versus 2% in the original CAR.

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

Table 4 Estimated Average Monthly User Charges (MPCA Loan with Grant)(1)									
User	Estimated User Rate,								
	\$/mo								
	50% Grant								
Average User Rate for Cluster System (including Total N Treatment System)	\$140								
Alternative 3 Hybrid System	\$168								

(1) 30-year loan @ 1.0% interest rate

The hybrid system has a higher user rate primarily due to the higher O&M cost. Additional grant does not lower the cost of Alternative 3 as much as the cluster system because the O&M costs are a higher percentage of the total annual cost. The hybrid holding tank hauling charge would need to drop to approximately \$23,000/yr to equal the cluster system cost (from \$197 to \$98 per 2,000 gallon pumpout).

It is important to note that the user rates presented in Table 4 are for a 30-year loan, an interest rate of 1% and the assumption that all 34 properties would be hooked up to the community system. If fewer residents are connected to the system or the loan period term is less, then the user rate listed for the cluster system could be higher.

Mr. David Sahli, P.E. Minnesota Pollution Control Agency November 6, 2012

RECOMMENDED ALTERNATIVE

The individual ISTS alternatives do not provide a lower user rate than the original cluster system. The recommended system for the Birch Point Road system continues to be a pressure sewer collection system with a treatment system and discharge to the subsurface as originally presented in the CAR.

If you have questions or need additional information, please contact me at (612) 548-3125. Thank you.

Sincerely,

MSA Professional Services, Inc.

Carl Scharfe, P.F. Project Engineer

Enclosures: Attachment 1: On-Site Report Attachment 2: On-Site Alternative Cost Estimate

cc: Jeff Crosby, St. Louis County Dan Belden, WLSSD

ATTACHMENT 1

ON-SITE REPORT

July 31, 2012

Mr. Carl Scharfe, PE MSA Professional Services, Inc. 412 Hayward Avenue North Oakdale, MN 55128

Re: Community Assessment Report Assistance Birch Point Road Subordinate Sanitary District, Grand Lake Twp., St. Louis Co., MN

Dear Mr. Scharfe:

The following paragraphs and associated attachments present results and conclusions for the further assessment of conditions associated with onsite wastewater systems in the Birch Point Road Subordinate Sanitary District. A Microsoft Excel spreadsheet used for analysis of the collected information, Microsoft Word file containing the tables presented below, and AutoCAD file with the area mapping have been forwarded via electronic mail.

The Birch Point Road Subordinate Sanitary District is comprised of residential properties along the northwestern shore of Caribou Lake within part of the central ¹/₂ of Section 13, Township 51 North, Range 16 West, Grand Lake Township of St. Louis County, Minnesota. Of the properties, 34 have single family dwellings constructed on them, some being used as yearround residences and some being used as cabins, both year-round and seasonally. Because the district is in a rural location, all the properties with dwellings have a wastewater system on site. For onsite wastewater systems around Caribou Lake surveyed in 2003 of which these were a part, 68 percent were observed to not have the conditions necessary to provide a sufficient level of treatment. Due to a lake-wide solution not being forthcoming, property owners organized the subordinate sanitary district through Grand Lake Township in an effort to correct the observed problems in their area. In 2011 a Community Assessment Report (CAR) was completed identifying an off-site cluster-type treatment and dispersal system as the most costeffective and desired alternative for handling district wastewater, based in part on the onsite system information collected in 2003. Minnesota Pollution Control Agency (MPCA) review of the CAR resulted in the request for more detailed information on onsite system alternatives. MATRIX Soils & Systems was retained to further observe and document site conditions associated with on-site treatment and dispersal, and to provide conclusions regarding feasibility of replacing non-compliant onsite systems with compliant ones.

Methods used to assess feasibility included desktop and field observations. Area meeting lake, property boundary, water supply well, and building set-back distances were identified for each property via digital mapping. Dwelling size (number of bedrooms) was obtained from St. Louis County Assessor information provided by the county Environmental Services Department. Information regarding existing onsite wastewater systems and associated soil conditions was obtained from assessment forms of the 2003 survey. Field observation of property conditions occurred during a site visit conducted July 24th, 2012. Apparent building use, well type, existing onsite wastewater system type and compliance status (for those properties not reviewed in 2003), and area with potential for use in treatment and dispersal of wastewater onsite based on visually observed surface conditions were assessed for all 34 properties with dwellings, recording observations on a site assessment form. Treatment and dispersal site capability was then estimated using the assembled and recorded information to determine the type of system that could be accommodated for existing and potential future property use. Property data,

Mr. Carl Scharfe, PE July 31, 2012 Page 2

results, and conclusions were entered into a computer database for analysis. The attached printout presents the data entered and analysis results. System construction and operation costs were projected from limited contractor contacts.

Observation and analysis results are summarized as follows:

- 59 percent of the dwellings appear to currently have the capability for year-round occupancy, whereas, in 2003 that percentage was 44.
- Existing dwelling capacities based on number of bedrooms is presented in the underlying table.

DWELLING CAPACITY	NUMBER	PERCENT
1 bedroom	11	32
2 bedrooms	9	26
3 bedrooms	14	42

• MPCA (MR 7080.1860) dwelling type based solely on square footage is presented in the underlying table.

DWELLING TYPE	NUMBER	PERCENT
I*	11	32
II†	13	38
III‡	10	30

* > 800 square feet of total living space/bedroom.

- [†] 500-to-800 square feet of total living space/bedroom.
- [‡] < 500 square feet of total living space/bedroom.
- MPCA type of existing onsite wastewater systems is presented in the underlying table.

SYSTEM TYPE	NUMBER	PERCENT
I*	15	44
II†	3	9
III‡	1	3
IV§	2	6
VI	1	3
Unknown/Other¶	12	35

- * MR 7080.2200 (trenches, beds, or mounds).
- [†] MR 7080.2250 (holding tanks).
- [‡] MR 7080.2300 (reduced flow Type I systems).
- § MR 7080.2350 (systems using registered treatment and distribution products).
- MR 7080.2400 (systems using non-registered treatment products or unconventional/unproven methods for treatment and/or dispersal).
- \P Unknown or other methods of subsurface treatment and dispersal.
- 76 percent of existing systems appear to be non-compliant failing to protect groundwater.

Mr. Carl Scharfe, PE July 31, 2012 Page 3

• Bedrooms and dwelling type translate into projected wastewater flow rates through Table IV of MR 7080.1860, a portion of which is recreated in the underlying table.

	WASTEWATER FLOW (gpd) BY DWELLING TYPE*										
DWELLING CAPACITY	I [†]	II	III								
1 or 2 bedrooms	300	225	180								
3 bedrooms	450	300	218								

* Flow rates are for Type I systems; Type III (reduced flow) systems rates may be ≥ 67 percent of these rates.

[†] St. Louis County Ordinance 55, Section 22.02.A.3. specifies use of Type I dwelling flow rates.

 35 percent of the properties do not appear to have conditions that will support even reduced flow systems, i.e. would require a holding tank as the compliant replacement system. This percentage increases to 68 with designating three-bedroom Type I dwellings for all properties, that for which the cluster system has been sized. The underlying table summarizes required system types for existing dwelling use as well as for three-bedroom Type I dwellings. Capability of individual properties is indicated in the attached spreadsheet printout and individual site plans.

	EXISTI	NG USE*	3-BEDROON	A TYPE I USE
SYSTEM TYPE	NUMBER	PERCENT	NUMBER	PERCENT
Ι	8	24	4	12
II	17	50	23	68
III	6	17	5	14
IV	2	6	1	3
V	1	3	1	3

Based on St. Louis County minimums. Using MPCA dwelling types increases the number of types I and III to 12 and 8, respectively, and reduces the number of holding tanks (Type II) to 12. Also, replacing shallow wells with deep ones on four of the properties would accordingly decrease the number holding tanks and increase types I and III by two each.

Determining onsite system replacement costs was somewhat problematic in that there are many alternatives to consider: three dwelling types by two use levels by two bedroom sizes by four system types by any number of soil and site characteristic differences. The alternative of most immediate interest is that which would generate costs for direct comparison to those of the cluster system, i.e. systems for three-bedroom Type I dwellings. Yet likely of additional interest are costs associated with the minimum action that will be needed to address correction of observed problems within the district, i.e. the predominant failure-to-protect-groundwater status of over three-quarters of the existing onsite systems. This minimum would be addressing existing use of the properties replacing non-compliant systems with those meeting current St. Louis County regulations. Finally, although site conditions vary within the district, there are typical conditions associated with properties capable of supporting Type I and Type III systems. For Type I capable sites, typical conditions consist of 24 inches of consistently unsaturated permeable soil and 5 percent slopes are typical. These conditions translate to contour loading rates of 8 gpd/ft and 4 gpd/ft, respectively.

The following table presents projected construction and operation costs for three-bedroom Type I and III onsite wastewater systems as well as the area required for installation – of the

Mr. Carl Scharfe, PE July 31, 2012 Page 4

treatment and dispersal component, which in both cases would be a mound. Also included are the projected costs for construction and operation of a holding tank system, with separation into those that would be for systems installed at properties having dwellings used year-round, and those for systems installed at properties with seasonally-used dwellings. Relevant conditions used in the cost projections are presented in the footnotes.

		COSTS						
SYSTEM TYPE*	REQUIRED AREA	CONSTRUCTION [†]	OPERATION					
Ι	80 ft × 30 ft	\$18,000	\$ 120 [±]					
II (Year-Round) §	N/A∥	\$ 7,200	\$8,900					
II (Seasonal)¶	N/A	\$ 4,700	\$2,000					
III#	100 ft × 30 ft	\$24,000	\$ 120 [‡]					

* Sized for three-bedroom Type I dwellings.

[†] Includes estimated sales tax, system design, and construction permitting costs.

[‡] Annual operation including electricity, and triennial tank pumping and maintenance visits.

§ 2,000-gallon tank pumped approximately 45 times per year, i.e. average 250 gpd.

Not applicable.

- 1,000-gallon tank pumped approximately 12 times per year, i.e. 60 days per year averaging 200 gpd.
- # Sized for average flows, which are typically 67 percent of peak, in this case 100 gpd/bedroom instead of 150 gpd/bedroom.

Note two-bedroom types I and III mound systems would cost around 15 percent less than threebedroom systems as tanks and other components would be the same; only cost of the mound would change, i.e. be less. Also, although the dispersal component of Type IV systems is likely to have a smaller footprint, e.g. an at-grade with an approximate footprint of 65 feet by 15 feet in the case of a three-bedroom Type I use, the various treatment products available and associated system configurations make for custom development to meet the needs and desires of a property owner. Although a Type IV system, of which there are two already installed and operating within the district (single pass sand and peat filters), would likely be the choice of a number of the property owners, those owners should be directly involved in selecting the technology used. Construction costs for systems utilizing Type IV technologies are likely to be in the range of 25 percent to 35 percent higher than comparably sized mound systems, annual operation costs approximately three times higher due to the necessity of annual operation visits.

The information presented in this letter report should be sufficient to allow you to update the CAR in a manner acceptable to MPCA. If you have any questions, please call or e-mail. Keep me apprised of the township meeting schedule so I may attend and assist in explanation of this information to district property owners.

Sincerely,

MATRIX Soils & Systems, Inc.

Robert W. Whitmyer, CPSS, PSS, Advanced Designer/Inspector, Service Provider President

						Dwelling Existing Onsite System						m Future Replacement Onsite System							
First Name	Last Name	Mail Road Name City	State	Zip	Plat Parcel Code	2003 Use	2012 Use	Туре	Bedrooms	Туре	Status	CUPS Depth (in.)) Slope (%)	Type (MPCA Existing Use)	Type (St. Louis Co. Existing Use)	Type (w/ Well Replacemnt)	Year-Round Use T	ype (3-bdrm Type I Dwelling)	Available Replacement Area
BERHNT	EID	5957 BIRCH POINT RD SAGINAW	MN	55779	380-0050-00780	S	S	III	3	US	GPF	11	6	11	II	I	Y	NF	N
DANIEL	GLIBBERY	5958 BIRCH POINT RD SAGINAW	MN		380-0050-00620	S	S	11	1	US	GPF	13	3	111	III	UN	Q	NF	N
WILLIAM	ANGST	5959 BIRCH POINT RD SAGINAW	MN		380-0050-00770	YR	S	1	1	11	С	≥ 12	level	11	II	UN	Y	NF	N
MARK/ALLYSON	BERGMAN	5963 BIRCH POINT RD SAGINAW	MN		380-0050-00760	S	YR	11	1	US	GPF	17	5	П	II	III	Y	NF	N
JOHN J.	HOCEVAR	5965 BIRCH POINT RD SAGINAW	MN		380-0050-00740	YR	YR	1	3	IV	С	≥ 12	level	IV	IV	UN	Y	IV	N
THOMAS	SEYMOUR	5969 BIRCH POINT RD SAGINAW	MN		380-0050-00730	S	YR	III	2	US	GPF	≥ 12	6	Ш	II	UN	Q	NF	N
DOUGLAS E	MALNATI	5971 BIRCH POINT RD SAGNAW	MN		380-0050-00720	YR	S	III	1	0	GPF	6	5	111	II	UN	Y	NF	N
LYNN	SLORDAL	5977 BIRCH POINT RD SAGINAW	MN		380-0010-02675	YR	YR	I	3	I	GPF	26	3	I	III	UN	Y	111	Y
WILLIAM	JOPKE	5978 BIRCH POINT RD SAGINAW	MN		380-0050-00610	YR	YR	11	3	I I	GPF	17	6	111	II	UN	Y	NF	N
DANIEL	THOMPSON	5979 BIRCH POINT RD SAGINAW	MN		380-0010-02672	YR	YR	1	3	V	С	12	level	V	V	UN	Y	V	N
GARY	LANE	5980 BIRCH POINT RD SAGINAW	MN		380-0050-00590	S	YR	11	2	1	GPF	16	7	I	III	UN	Y	NF	N
JAMES	FREEMAN	5982 BIRCH POINT RD SAGINAW	MN		380-0050-00580	S	YR	11	2	0	GPF	19	level	11	II	UN	Y	NF	N
DENNIS A	ANDERSON	5984 BIRCH POINT RD SAGINAW	MN		380-0050-00570	S	S	III	1	US	GPF	≥ 14	level	I	II	UN	Y	NF	N
JAMES	DOYLE	5986 BIRCH POINT RD SAGINAW	MN		380-0050-00560	S	S	III	1	0	GPF	9	level	Ш	II	UN	Y	NF	N
MICHAEL	NASH	5988 BIRCH POINT RD SAGINAW	MN		380-0050-00550	YR	YR	11	3	1	GPF	12	5	11	II	UN	Q	NF	N
RICHARD	RESCH	5900 BIRCH POINT RD SAGINAW	MN		380-0050-00540	S	YR	1	3	I I	GPF	≥ 12	5	111	III	UN	Y	III	N
MARK	BOBEN	5992 BIRCH POINT RD SAGINAW	MN		380-0050-00530	YR	YR	III	3	I	GPF	23	8	I	I	UN	Y	I	N
RICHARD	PLYS	5994 BIRCH POINT RD SAGINAW	MN		380-0050-00505	YR	YR	11	3	1	GPF	28	3	11	II	UN	Q	NF	N
JAMES	HODGE	5998 BIRCH POINT RD SAGINAW	MN		380-0050-00490	YR	YR	III	3	I	GPF	11	5	I	I	UN	Y	I	N
JEANNE	PEARSON	6000 BIRCH POINT RD SAGINAW	MN		380-0050-00470	S	S	I	I	0	GPF	6	6	I	I	I	Y	111	Y
CADE	LEDINGHAM	6002 BIRCH POINT RD SAGINAW	MN		380-0050-00450	YR	YR	1	2	IV	С	11	5	IV	IV	UN	Y	NF	N
THOMAS	KURTOVICH	6004 BIRCH POINT RD SAGINAW	MN		380-0050-00440	YR	YR	I	3	III	С	8	10	11	II	UN	Y	NF	N
BRETT	MCLEAN	6010 BIRCH POINT RD SAGINAW	MN		380-0050-00415	S	YR	1	2	1	GPF	12	level	I	I	UN	Y	III	N
MARK	MELANDER	6014 BIRCH POINT RD SAGINAW	MN		380-0050-00410	S	YR	III	3	I I	GPF	12	8	Ш	II	UN	Y	NF	N
JAMES T.	SODEMAN	6016 BIRCH POINT RD SAGINAW	MN		380-0050-00400	YR	YR	11	2	I	GPF	15	level	111	III	UN	Y	NF	N
ERIC	RUSTAD	6020 BIRCH POINT RD SAGINAW	MN		380-0050-00370	YR	YR	I	2	I	GPF	6	level	I	I	UN	Y	111	Y
KIRK	GALLUP	6026 BIRCH POINT RD SAGINAW	MN		380-0050-00311	S	S	III	3	11	С	7	3	11	II	III	Y	NF	Y
CAROL	ANDERSON	6036 BIRCH POINT RD SAGINAW	MN		380-0050-00280	YR	YR	11	3	1	GPF	10	level	III	II	UN	Y	NF	N
GORDON/TAMMI	BEIER	6040 BIRCH POINT RD SAGINAW	MN		380-0050-00270	S	S	11	1	US	GPF	≥ 12	5	I	III	UN	Q	NF	N
MARILYN E	MORRIS	6044 BIRCH POINT RD SAGINAW	MN		380-0050-00256	S	S	11	1	1	GPF	≥ 12	3	III	II	UN	Q	NF	N
ALAN	ADAMS	6048 BIRCH POINT RD SAGINAW	MN		380-0050-00245	S	S	11	2	11	GPF	7	level	Ш	Ш	I	Y	NF	N
JIM	SAMARGIA	6050 BIRCH POINT RD SAGINAW	MN		380-0050-00226	S	S	П	1	I.	С	60	level	I	I	UN	Q	NF	N
DONNA	FRISK	6054 BIRCH POINT RD SAGINAW	MN		380-0050-00200	S	S	I.	1	US	GPF	≥ 60	12	I	I	UN	Y	I	Y
DAVID	ERICKSON	6058 BIRCH POINT RD SAGINAW	MN	55779	380-0050-00185	S	S		2	US	GPF	≥ 27	12	I	I	UN	Y	I	Y

S S S III 2 Abreviations: CUPS = Consistently Unsaturated Permeable Soil S = Seasonal YR = Year-Round Dwelling Type II = 500 sf/bdrm Dwelling Type II = 500 sf/bdrm Dwelling Type II = MR (3/11) 7080.2200 System Type II = MR (3/11) 7080.2200 System Type II = MR (3/11) 7080.2200 System Type II = MR (3/11) 7080.2300 System Type IV = MR (3/11) 7080.2300 System Type IV = MR (3/11) 7080.2400 O = Other US = Unknown Subsurface C = Compliant GPF = Groundwater Protection Failure UN = Unnecessary NF = Not Feasible Y = Yes Q = Questionable N = No

Properties w/ Replacement Area

PUENTIAL SYSTEM ADVING WELLS DEASONAR 3-BEDROOM TYPE III DWELL EXEMPTION NON-COMPLIANT UNKNOWN SI	UBSURFACE SYSTEM	4 EXISTING USE REPLACEMENT	REFESSION Y GIS MAP ID OBSERVA (ARDING DW E, AND SY RE BASED IN AND FIE	AL PING, TLONS. ELLING, STEM ON LD
THE II HOLDING TANK REPLACEMENT (EXISTING & FUTURE USE) TYPE I MOUND REPLACEMENT FEASIBILI (EXISTING USE W/ MOVING WELLS)	A STATE OF	4. EXISTING USE REPLACEMENT CURRENT ST. LDUIS COUNTY FUTURE USE REPLACEMENT WO ADDITION BE CAPABLE OF AC 3-BEDROOM TYPE I WASTEWAT	WOULD MEE REGULATIO IULD IN COMODATIN ER FLOWS.	T NS. G
DRAWN RWW SITE MAP MATRIX Soils & Systems	5957 BI	POTENTIAL SEPTIC SYSTEM DESCRIPTION PROPERTY RCH POINT ROAD MINNESOTA 55779	SH	07/31/12 date

50

25

WE

0

GRAPHIC SCALE IN FEET

5-2

NOTES

PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.

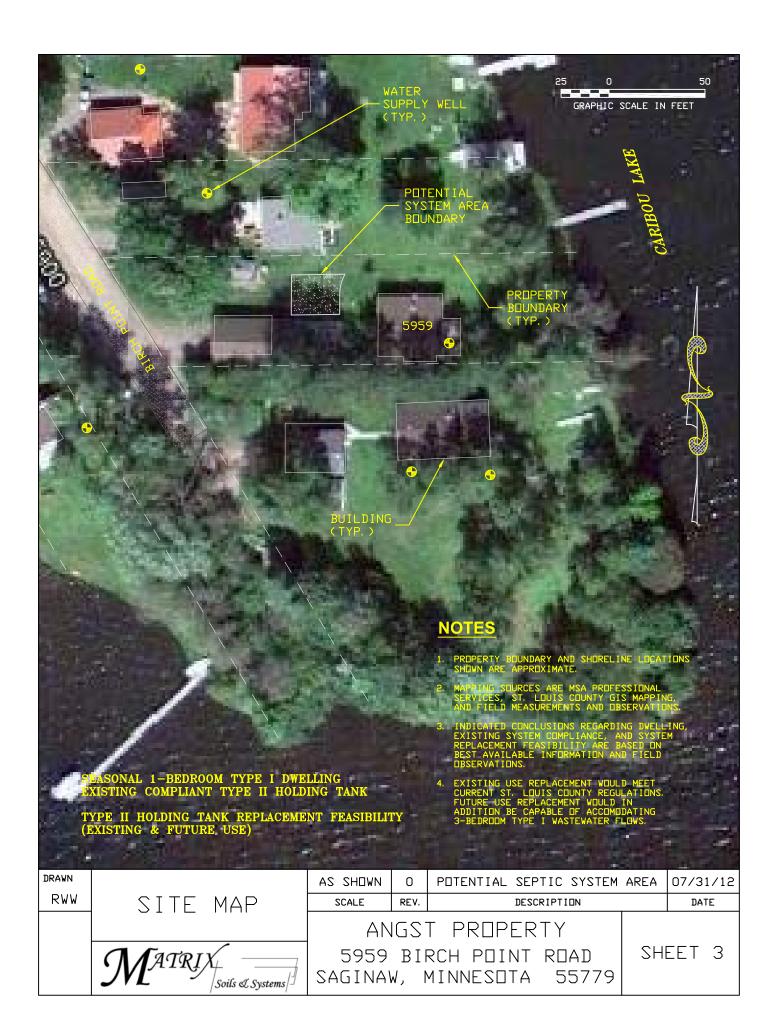
URCES ARE MSA PROFESSIONAL ST. LOUIS COUNTY GIS MAPPING, MEASUREMENTS AND OBSERVATIONS.

> USIONS REGARDING DWELLING COMPLIANCE, AND SYSTEM SIBILITY ARE BASED ON INFORMATION AND FIELD

NG USE REPLACEMENT WOULD MEET STATULDUIS COUNTY REGULATIONS STREPLACEMENT WOULD IN ION BE CAPABLE DF ACCOMDATING ROOM TYPE I WASTERATER FLOWS

> POTENTIAL SYSTEM AREA BOUNDARY

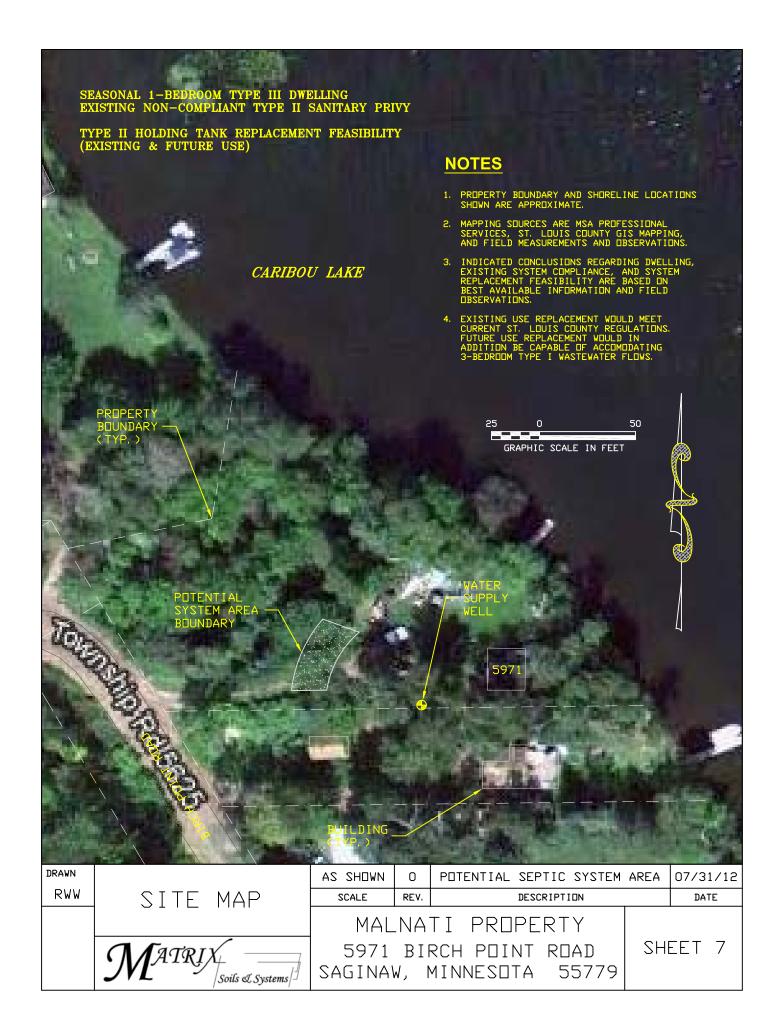
SEASONAL 1-BEDROOM TYPE II DWELLING EXISTING NON-COMPLIANT UNKNOWN SUBSURFACE SYSTEM


TYPE III MOUND REPLACEMENT FEASIBILITY (EXISTING USE)

TYPE II HOLDING TANK REPLACEMENT FEASIBILIT (FUTURE USE)

CARIBOU LAKE

50


		GR	APHIC :	SCALE IN FEET		
DRAWN		AS SHOWN	0	POTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		GLI	BBE	RY PROPERTY		
	MATRIX Soils et Systems			RCH POINT ROAD MINNESOTA 55779	SHI	EET 2

	BUIL	DING	SUI	TER PPLY W	/ELL	e de la constante de la consta	3.14	CALE IN	
				· · · · · · · · · · · · · · · · · · ·		POTENT I SYSTEM BOUNDAR	AREA		
	RTY BOUNDARY AND SH N ARE APPROXIMATE.							→ BOUT < TYP	PERTY NDARY P,)
1. INDIC EXIS REPLA BEST DBSE	ING SOURCES ARE MSA TCES, ST. LOUIS COUN FIELD MEASUREMENTS A TING SYSTEM COMPLIAN ACEMENT FEASIBILITY AVAILABLE INFORMATI AVAILABLE INFORMATI TING USE REPLACEMENT ST. LOUIS COUNTY RE USE REPLACEMENT W TION BE CAPABLE OF A DROOM TYPE I WASTEWA	GARDING DWELLING, ICE, AND SYSTEM ARE BASED ON ON AND FIELD		NON- HOLDIN & FU MOUNE	-BEDROOM COMPLIANT IG TANK RE JTURE USE) D REPLACEM W/ MOVING	UNKNOW PLACEME ENT FEA: SOUTHE	N SUBSUR NT FEASII SIBILITY RN NEIGH	RFACE S BILITY BOR'S 1	SYSTEM (1911) 07/31/12
RWW	site M ^{atri}		scale BER	rev. GMA BIR	N PRE	descript PERT NT RE	IDN		DATE

	EXISTING		Ĩ		1 A A	SCALE IN	1
	SYSTEM AREA - BOUNDARY			-	7-	CARTBOU LA	
					ROPERTY DUNDARY	CM	
			5965		TYP.)		
		••••••••••••••••••••••••••••••••••••••	2		WATER		
			DING_	1	(TYP.)		
							1.
	ST BOUNDARY AND SHORELINE LOCATIONS N ARE APPROXIMATE.				•	•	
	ING SOURCES ARE MSA PROFESSIONAL IEES, ST. LOUIS COUNTY GIS MAPPING, FIELD MEASUREMENTS AND OBSERVATIONS. CATED CONCLUSIONS REGARDING DVELLING, TING SYSTEM COMPLIANCE, AND SYSTEM ACCMENT FEASIBILITY ARE BASED ON AVAILABLE INFORMATION AND FIELD			in the			
4. EXIS	TING USE REPLACEMENT WOULD MEET ENT ST. LOUIS COUNTY REGULATIONS. RE USE REPLACEMENT WOULD IN TION BE CAPABLE OF ACCOMUDATING DROOM TYPE I WASTEWATER FLOWS.	EXISTING CON	MPLIAN ERMITT	T TYPE IV I ENT SAND F	I DWELLING NTERMITTENT SA ILTER REPLACEME		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		AS SHOWN	0	POTENTIAL	SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.				DATE
				AR PRO			
	MATRIX Soils & Systems				NT ROAD Ta 55779		EET 5

NOTES

- RUPERTY BOUNDARY AND SHORELINE LOCATIONS HOWN ARE APPROXIMATE
- NG SOURCES ARE MSA CES, ST. LOUIS COUN TELD MEASUREMENTS A PROFESSIONAL NTY GIS MAPPI
- DWELLI I COMPLIANCE, AND SYST SIBILITY ARE BASED ON INFORMATION AND FIELD TFM TΠ
- WOULD ME CEMENT DUIS COUNTY REGULATION PLACEMENT WOULD IN APABLE OF ACCOMODATING TE I WASTEWATER FLOWS.

YEAR-ROUND 3-BEDROOM TYPE I DWELLING EXISTING NON+COMPLIANT TYPE I MOUND

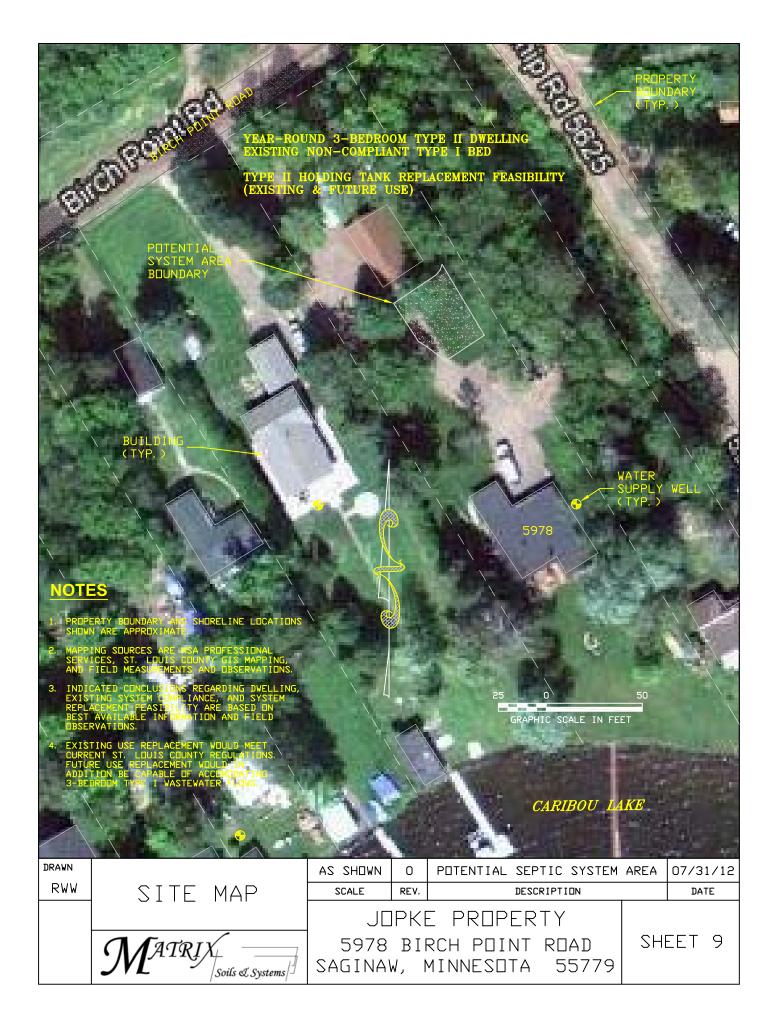
TYPE III MOUND REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

DTENTIAL SYSTEM AREA BOUND

anas

LDING

CARIBOU LAKE 0 25


GRAPHIC SCALE IN FEET

50

DPER

DRAWN		AS SHOWN	Ο	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12	
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE	
		SL	SLORDAL PROPERTY				
	MATRIX Soils & Systems			RCH POINT ROAD MINNESOTA 55779	SHE	EET 8	

WATER SUPPL WEL

YEAR-ROUND 3-BEDROOM TYPE I DWELLING EXISTING COMPLIANT TYPE V CONSTRUCTED WETLAND

TYPE V CONSTRUCTED WETLAND REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

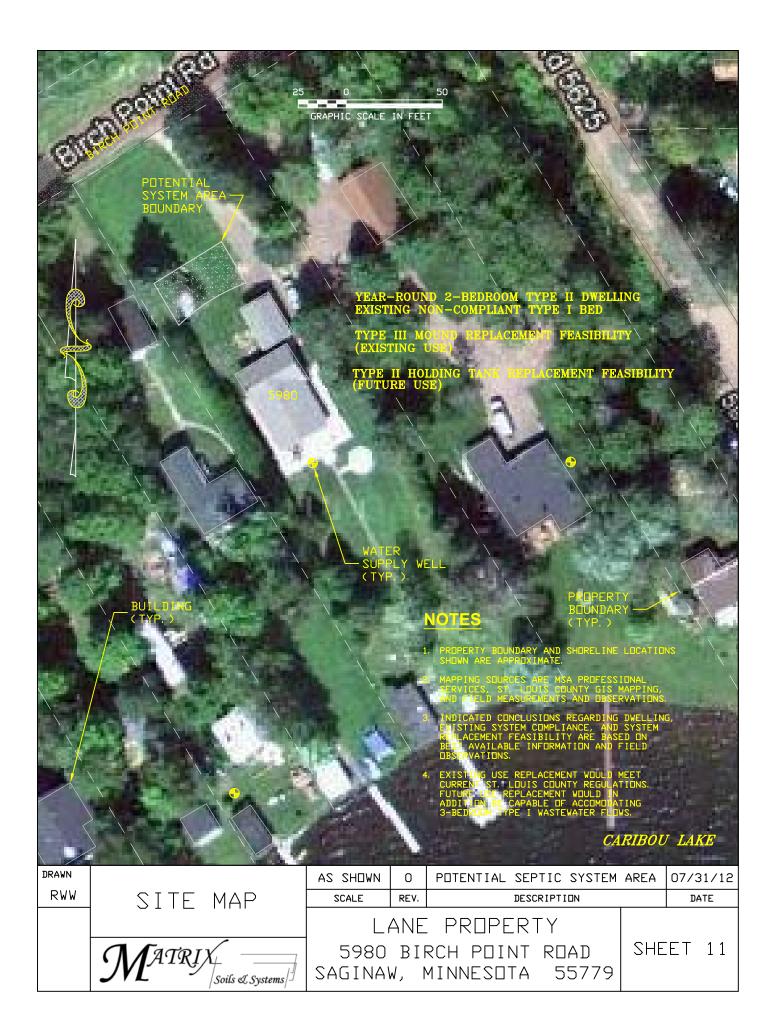
50

(TYP.)

PHIC SCALE IN FEET

LAKE

EXISTING SYSTEM AREA BDUNDARY


ALC: NOT THE OWNER, NOT

NOTES

- PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.
 MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.
- 3
- DICATED CONCLUSIONS REGARDING DWELLING, ISTING SYSTEM COMPLIANCE, AND SYSTEM PLACEMENT FEASIBILITY ARE BASED ON ST AVAILABLE INFORMATION AND FIELD SERVATIONS.
- EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LDUIS COUNTY REGULATIONS FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMODATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
			MPS	ON PROPERTY		
	MATRIX Soils & Systems			RCH POINT ROAD MINNESOTA 55779	SHE	ET 10

5979

- D SHORELINE LOCATIONS
- RECEIPTION OF CONTRACT OF CONTRACTO OF CONTRACTO OF CONTRACTO OF CONTRACTO OF CONTRACT OF CONTRACT OF CONTRACT OF CONTRACTO OF CONTRACT OF FES SERVICES, ST. AND FIELD MEAS
 - INDICA ARDI S, ATION AND FIELD AVAILAB VATIONS
 - MEET

SUP WEL (TYP

IBOU LAKE

50

TYPE II DWELLING -BEDRO <u>ар</u>, ON-COMPLI **KISTING**

GPLACEMENT FEASIBILITY TYPE II HOLDING TANK EXISTING & FUTURD

PROPERTY BOUNDARY (TYP.)

GRAPHIC SCALE IN FEET

0

DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		FRE	ΕM	AN PROPERTY		
	MATRIX			RCH POINT ROAD MINNESOTA 55779	SHE	ET 12
	Soils & Systems/		., .			

SEASONAL 1-BEDROOM TYPE III DWELLING EXISTING NON-COMPLIANT UNKNOWN SUBSURFACE SYS

TYPE II HOLDING TANK REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

NOTES

37

PROPERTY BOUNDAR SHOWN ARE APPROX ATION

MAPPING SOURCES SERVICES, ST. LO AND FIELD MEASUR

ς τ γε

Alenteman

NDICATED CONCLU ISTING SYSTEM PLACEMENT FEA ST AVAILABLE SIBI BEST AVAILAB DBSER

XIST ENT Y REGUL WOULD I OF ACCOMOD

5984

BUILD TYP. >

GRAPHIC SCALE IN FEET

CARIBOU LAKE

50

SUPPLY WELL (TYP.)

POTENTIAL SYSTEM AR

M BOUNDARY

DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		AND	ERS	ON PROPERTY		
	MATRIX Soils & Systems	5984 Sagina		RCH POINT ROAD MINNESOTA 55779	SHE	ET 13

SEASONAL-1-BEDROOM TYPE III DWELLING EXISTING NON-COMPLIANT SEEPAGE PIT

Bitch Pannak

TYPE II HOLDING TANK REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

> DPERTY BOUNDARY AND SHORELINE LOCATIONS DWNMARE APPROXIMATE.

ATTERS ST. LOUIS COUNTY GIS MAPPING, DETELD MEASUREMENTS AND DESERVATIONS

PATED CONCLUSIONS REGARDING DWELLIN STING SYSTEM COMPLIANCE, AND SYSTEM ACCMENT FEASIBILITY ARE BASED ON TAVAILABLE INFORMATION AND FIELD

EXISTING USE REPLOCEMENT WOULD MEE CURRENT ST. LOUIS COUNTY REGULATION FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMENTATION DEPENDENT TO THE ACCOMENTATION

WATER

GRAPHIC SCALE IN FEET

CARIBOU LAN

DRAWN		AS SHOWN	0	POTENTIAL SEPTIC SYSTE	M AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		DE]YL	E PROPERTY		
	MATRIX Soils & Systems			RCH POINT ROAD Minnesota 55779	SHE	ET 14

BITCH PROMINITIES

PROPERTY BOUNDARY AND SHORELINE LOCATI SHOWN ARE APPROXIMATE.

MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.

INDICATED CONCLUSIONS REGARDING DWELLING EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.

EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMPDATING

EAR-ROUND 3-BEDROOM TAPE II DWELLING XISTING NON-COMPLIANT TAPE I BED

YPE II HOLDING TANK REPLACEMENT FEASIBILITY EXISTING & FUTURE USE)

GRAPHIC SCALE IN FEET AS SHOWN O

50

DRAWN	
RWW	SITE MAP
	MATRIX Soils & Systems

BOUN

AS SHOWN O POTENTIAL SEPTIC SYSTEM AREA SCALE REV. DESCRIPTION NASH PROPERTY 5988 BIRCH POINT ROAD SHI

SAGINAW, MINNESOTA 55779

ATER

988

DATE SHEET 15


07/31/12

CARIBO

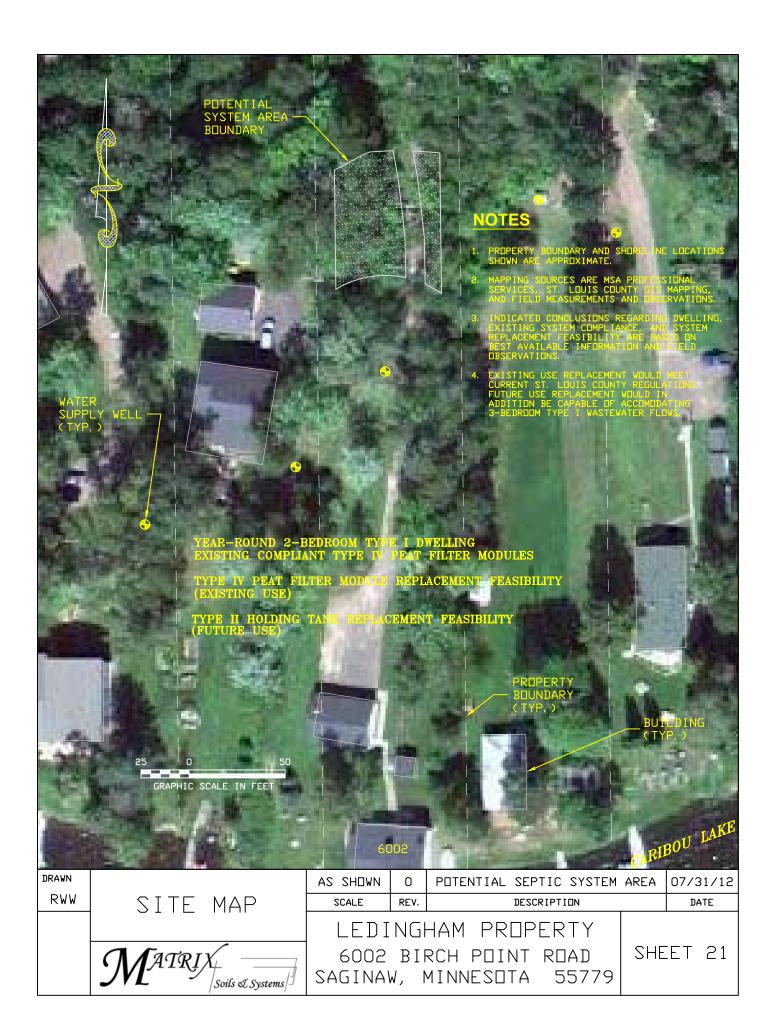
BIRCH POINT &		
	ROOM TYPE II DWELLING LIANT TYPE I MOUND	
(EXISTING & FUTURE	NK REPLACEMENT FEASIBILITY	
	CTY CTY	P.)
POTENTIAL SYSTEM AREA BOUNDARY		
	WATER SUPPLY WELL (TYP.)	
Art	NOTES	
	 PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE. MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND DESERVOITIONS 	WX -
	3. INDICATER CONCLUSIONS REGARDING DVELLIN EXISTING SYSTEM COMPLIANCE, NO SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON	
5994	BEST AVAILABLE INFORMATION AND FIELD DBSERVATIONST 4. EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS.	
	4. EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. DUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMDDATING 3-BEDROOM TYPE I WASTEWATER FLOWS.	T LAKE
25 0 50 GRAPHIC SCALE IN FEET	CA	RIBOU LAKE
DRAWN		
RWW SITE MAP	AS SHOWN O POTENTIAL SEPTIC SYS SCALE REV. DESCRIPTION	STEM AREA 07/31/12 DATE
MATRIX Soils & Systems	PLYS PROPERTY 5994 birch point road Saginaw, minnesota 557	

- PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.
- MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.
- 3. INDICATED CUNCLUSIONS REGARDING DWELLIN EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.
 - EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMDATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

TYPE I MOUND REPLACE EXISTING USE)

TYPE III MOUND REPLAC (FUTURE USE) T DWELLING YPE II SANITARY PRIVY T FEASIBILITY JTENTIAL

EM AREA


WFI

GRAPHIC SCALE IN FEET

ENT FEASIBILITY

				CONCINCTION OF BRIDE		
DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		PEA				
	MATRIX Soils et Systems			RCH POINT ROAD MINNESOTA 55779	SHE	ET 20

6000

POUND BION YEAR-ROUND 2-BEDROOM TYPE I DWELLING EXISTING NON-COMPLIANT TYPE I MOUND

> TYPE I MOUND REPLACEMENT FEASIBILITY EXISTING USE)

TYPE III MOUND REPLACEMENT FEASIBILITY (FUTURE USE)

NOTES

3.

PROPERTY BUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE

MAPPING SEURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.

INDICATED CONCLUSIONS REGARDING DWELLING, EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.

EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMODATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

3.5	and the second s	10 m 10 m				7 127
DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		MC				
	MATRIX Soils & Systems			RCH POINT ROAD MINNESOTA 55779	SHE	ET 23

GRAPHIC SCALE IN FEET

BIRCH POINT ROAD

NOTES

PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.

MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.

INDICATED CONCLUSIONS REGARDING DWELLING, EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD DESCOVERIONS

USTING USE R JRRENT ST. LO JTURE USE REP IDITION BE CA

GRAPHIC SCALE IN FE

CARIBOU LAKE

LOUIS COUNTY REGULATIONS. REPLACEMENT WOULD IN CAPABLE OF ACCOMODATING TYPE I WASTEWATER FLOWS. YEAR-ROUND 3-BEDROOM TYPE III DWELLING EXISTING NON-COMPLIANT TYPE TRENCHES

DTENT

Birchitz

TYPE II HOLDING TANK REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

> PROPERTY BOUNDARY (TYP.)

BUILDING

DRAWN AS SHOWN 0 POTENTIAL SEPTIC SYSTEM AREA 07/31/12 SITE MAP RWW SCALE REV. DESCRIPTION DATE MELANDER PROPERTY MATRIX SHEET 24 6014 BIRCH POINT ROAD SAGINAW, MINNESOTA 55779 Soils & Systems

BIRCH POINT ROAD

PROPERTY BOUNDARY (TYP.)

YEAR-ROUND 2-BEDROOM TYPE II DWELLING EXISTING NON-COMPLIANT TYPE I TRENCHES

TYPE III MOUND REPLACEMENT FEASIBILITY (EXISTING USE)

TYPE II HOLDING TANK REPLACEMENT FEASIBILITY (FUTURE USE)

50

GRAPHIC SCALE IN FEET

NOTES

I. PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.

- P. MAPPING SUBJECTS ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND DESERVATIONS.
- 3. INDICATED CONCLUSIONS REGARDING DWELL EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.
- 4. EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMDATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

CARIBOU LAKE

COLUMN TWO IS NOT

DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		SDD				
	MATRIX Soils & Systems			RCH POINT ROAD Minnesota 55779	SHE	ET 25

SEASONAL 3-BEDROOM TYPE III DWELLING EXISTING COMPLIANT TYPE II HOLDING TANK

Elich Point Rd

TYPE II HOLDING TANK REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

TYPE III MOUND REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE W/ MOVING WELLS)

> POTENTIAL SYSTEM AREA BOUNDARY

> > BUILDING

25

GRAPHIC SCALE IN FEET

WATER

CARIBOU LAKE

NOTES

2.


PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.

MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.

INDICATED CONCLUSIONS REGARDING DWELLING, EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.

4. EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMDATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12		
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE		
		GALLUP PROPERTY						
	MATRIX Soils & Systems			RCH POINT ROAD MINNESOTA 55779	SHE	ET 27		

		Birch Poi	mRd	
	PETRI PROPERTY BOUNDARY CTYP.)		NOTES 1. PROPERTY BOUNDARY AND SHOWN ARE APPROXIMATE. 2. MAPPING SOURCES ARE MS SERVICES, ST. LOUIS CO AND FIELD MEASUREMENTS	
			3. INDICATED CONCLUSIONS EXISTING SYSTEM COMPLI REPLACEMENT FEASIBILIT BEST AVAILABLE INFORMA OBSERVATIONS.	REGARDING DWELLING, ANCE, AND SYSTEM Y ARE BASED ON TION AND FIELD
			ADDITION BE CAPABLE OF 3-BEDROOM TYPE I WASTE POTENTI SYSTEM BOUNDAR	AL AREA
EXIST TYPE (EXIS	ONAL 1-BEDROOM TYPE II DWELLI Ing Non-Compliant Unknown S III Mound Replacement Feasib Ting USE)	UBSURFACE SYSTE		
	II HOLDING TANK REPLACE ENT IRE USE)			
	GRAPHIC SCALE IN FEET	6040 🗣		
	BUILDING (TYP.)			IBOU LAKE
DRAWN	(TYP.)	AS SHOWN O	POTENTIAL SEPTIC SYSTE	
RWW	SITE MAP	SCALE REV.	PUTENTIAL SEPTIC STATE DESCRIPTION R PROPERTY	DATE
	MATRIX Soils & Systems		RCH POINT ROAD Minnesota 55779	SHEET 29

ship Rd 5625

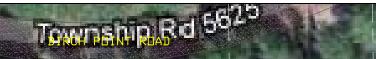
SEASONAL 2-BEDROOM TYPE II DWELLIN EXISTING NON-COMPLIANT TYPE II SAN

TYPE II HOLDING TANK REPLACEMENT (EXISTING & FUTURE USE)

TYPE I MOUND REPLACEMENT FEASIBILITY (EXISTING USE W/ MOVING EASTERN NEIGHBOR'S WELL)

SIBILIT

50


CARIBOU LAKI

NOTES

DRAWN AS SHOWN 0 POTENTIAL SEPTIC SYSTEM AREA 07/31/12 RWW SITE MAP SCALE REV. DESCRIPTION DATE ADAMS PROPERTY SHEET 31 6048 BIRCH POINT ROAD SAGINAW, MINNESOTA 55779 Soils & Systems

PROPERT

SEASONAL 1-BEDROOM TYPE II DWELLING EXISTING COMPLIANT TYPE I TRENCHES

TYPE I BED REPLACEMENT FEASIBILITY (EXISTING USE)

TYPE II HOLDING TANK, RUPLACEMENT FEASIBILITY (FUTURE USE)

NOTES

PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.

2. MAPPING SOURCES ARE MSA PROFESSION SERVICES, ST. LOUIS COUNTY GTS MAP AND FIELD MEASUREMENTS AND DESERVA

INDICATED CONCLUSIONS REGARDING DWEALING EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD OBSERVATIONS.

EXISTING USE REPLACEMENT WOULD MEET CURRENT ST. LOUIS COUNTY REGULATIONS. FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMDATING 3-BEDROOM TYPE I WASTEWATER FLOWS

BUILDING

25 0

ARIBOU LAKE

GRAPHIC SCALE IN FEET

50

BOUNDA

DRAWN AS SHOWN 0 POTENTIAL SEPTIC SYSTEM AREA 07/31/12 SITE MAP RWW SCALE REV. DESCRIPTION DATE SAMARGIA PROPERTY MATRIX SHEET 32 6050 BIRCH POINT ROAD SAGINAW, MINNESOTA 55779 Soils & Systems

NOTES					Test.	R .	
1. PROPERTY BOUNDAR	AY AND SHORELINE LOCATIONS			BIRCH PD	INT ROAD		
	ARE MSA PROFESSIONAL DUIS COUNTY GIS MAPPING, REMENTS AND OBSERVATIONS.					135	
						P	
EXISTING SYSTEM REPLACEMENT FEAS BEST AVAILABLE T	ISIONS REGARDING DWELLING, COMPLIANCE, AND SYSTEM SIBILITY ARE BASED ON INFORMATION AND FIELD				1		
UBSERVATIONS.	Contraction of the second s						
	LACEMENT WOULD MEET S COUNTY REGULATIONS. CEMENT WOULD IN BALE OF ACCOMODALING WASTEWATER FLOWS.				1000	5	
3-BEDROOM TYPE I	WASTEWATER FLOWS.						
					a seal	4	
					25 0		50
State of the second	1000				GRAPHIC	SCALE IN	FEET
and the second	POTENTIAL				Toolage		
and the second	SYSTEM AREA BOUNDARY					BUILDIN	IG
and the second						(TYP.)	
	An manual				i. / a		-
1000	A PROPERTY					- 7	and the second
a destant							
	and the second	1022					見
SEASONAL 1-B EXISTING NON	EDROOM TYPE I DWELLI - COMPLIANT UNKNOWN	NG SUBSURFACE	SYST	M	1	CTYP	·D
A REAL PROPERTY OF A REAL PROPER) REPLACEMENT FEASIBI PUTURE USE)		-		•		
(EXISTING & F	OTORE USE)	10	054	- 100 (c)	UATED		-
				12.6.2	SUPPLY	WELL	1.44
and the second second			18.		Ree a	18 C	TR.
					the second	oTBO	U LAKE
		Sec.				CARIE	
DRAWN RWW S		AS SHOWN	0		EPTIC SYSTEM	AREA	07/31/12
	ITE MAP	SCALE	REV.				DATE
	acou			K PROPE RCH POIN ⁻		 Shf	ET 33
$ \mathcal{M} $	AIRIX Soils & Systems			MINNESOTA			

Tewnship Rd 664

 PROPERTY BOUNDARY AND SHORELINE LOCATIONS SHOWN ARE APPROXIMATE.
 MAPPING SOURCES ARE MSA PROFESSIONAL SERVICES, ST. LOUIS COUNTY GIS MAPPING, AND FIELD MEASUREMENTS AND OBSERVATIONS.

3. INDICATED CONCLUSIONS REGARDING DWELLING EXISTING SYSTEM COMPLIANCE, AND SYSTEM REPLACEMENT FEASIBILITY ARE BASED ON BEST AVAILABLE INFORMATION AND FIELD COSEDUATIONS

4. EXISTING USE REPLACEMENT VOULD MEET CURRENT ST LDUIS COUNTY REGULATIONS FUTURE USE REPLACEMENT WOULD IN ADDITION BE CAPABLE OF ACCOMODATING 3-BEDROOM TYPE I WASTEWATER FLOWS.

50

GRAPHIC SCALE IN FEET

BUILDIN (TYP.)

25

SEASONAL 2-BEDROOM TYPE III DWELLING EXISTING NON-COMPLIANT UNKNOWN SUBSURFACE SYSTEM

TYPE I MOUND REPLACEMENT FEASIBILITY (EXISTING & FUTURE USE)

POTENTIAL SYSTEM AREA

> PROPERT BOUNDAR (TYP.)

RUH

100 C						
DRAWN		AS SHOWN	0	PDTENTIAL SEPTIC SYSTEM	AREA	07/31/12
RWW	SITE MAP	SCALE	REV.	DESCRIPTION		DATE
		ERI				
	MATRIX Soils & Systems			RCH POINT ROAD MINNESOTA 55779	SHE	ET 34

ATTACHMENT 2

ON-SITE ALTERNATIVES COST ESTIMATES

Table A-1 Birch Point Road Alternative 1 Costs (under St. Louis County Rules)

						Existing Or	site System	Fut	ure Replacement Onsite System	
First Name	Last Name	Mail	Road Name	2012 Use	Bedrooms	Туре	Status	Type (St. Louis Co. Existing Use)	Construct Cost	Operation Cost, \$/yr
BERHNT	EID		BIRCH POINT RD	S	3	US	GPF	II	\$4,700	\$2,000
DANIEL	GLIBBERY	5958	BIRCH POINT RD	S	1	US	GPF	III	\$21,000	\$120
WILLIAM	ANGST	5959	BIRCH POINT RD	S	1	II	С	II		\$2,000
MARK/ALLYSON	BERGMAN	5963	BIRCH POINT RD	YR	1	US	GPF	II	\$7,200	\$8,900
JOHN J.	HOCEVAR	5965	BIRCH POINT RD	YR	3	IV	С	IV		\$120
THOMAS	SEYMOUR	5969	BIRCH POINT RD	YR	2	US	GPF	II	\$7,200	\$8,900
DOUGLAS E	MALNATI	5971	BIRCH POINT RD	S	1	0	GPF	II	\$4,700	\$2,000
LYNN	SLORDAL	5977	' BIRCH POINT RD	YR	3	I	GPF	III	\$24,000	\$120
WILLIAM	JOPKE	5978	BIRCH POINT RD	YR	3	I	GPF	II	\$7,200	\$8,900
DANIEL	THOMPSON	5979	BIRCH POINT RD	YR	3	V	С	V		\$120
GARY	LANE		BIRCH POINT RD	YR	2	1	GPF	Ш	\$21,000	\$120
JAMES	FREEMAN		BIRCH POINT RD	YR	2	0	GPF	Ш	\$7,200	\$8,900
DENNIS A	ANDERSON		BIRCH POINT RD	S	1	US	GPF	II.	\$4,700	\$2,000
JAMES	DOYLE		BIRCH POINT RD	S	1	0	GPF	II.	\$4,700	\$2,000
MICHAEL	NASH		BIRCH POINT RD	YR	3	U U	GPF		\$7,200	\$8,900
RICHARD	RESCH		BIRCH POINT RD	YR	3		GPF	 III	\$24,000	\$120
MARK	BOBEN		BIRCH POINT RD	YR	3		GPF	1	\$18,000	\$120
RICHARD	PLYS		BIRCH POINT RD	YR	3	1	GPF	U	\$7,200	\$8,900
JAMES	HODGE		BIRCH POINT RD	YR	3		GPF		\$18,000	\$120
JEANNE	PEARSON		BIRCH POINT RD	S	1	Ö	GPF		\$18,000	\$120
CADE	LEDINGHAM		BIRCH POINT RD	YR	2	IV	C	I IV	\$18,000	\$120
THOMAS	KURTOVICH		BIRCH POINT RD	YR	3	III	c	10		\$8,900
BRETT	MCLEAN		BIRCH POINT RD	YR	3	111	GPF	1	\$15,000	\$8,900 \$120
MARK	MELANDER		BIRCH POINT RD	YR	2	1	GPF	1	\$7,200	\$8,900
JAMES T.	SODEMAN				3 2	1	GPF	11 111		\$8,900 \$120
ERIC			BIRCH POINT RD	YR YR	2	1	GPF GPF	111	\$21,000 \$15,000	
	RUSTAD		BIRCH POINT RD		2	1		1	\$15,000	\$120
KIRK	GALLUP		BIRCH POINT RD	S	3		С	II	#7 000	\$2,000
CAROL	ANDERSON		BIRCH POINT RD	YR	3	1	GPF	П	\$7,200	\$8,900
GORDON/TAMMI	BEIER		BIRCH POINT RD	S	1	US	GPF	III 	\$21,000	\$120
MARILYN E	MORRIS		BIRCH POINT RD	S	1	1	GPF	II	\$4,700	\$2,000
ALAN	ADAMS		BIRCH POINT RD	S	2	II	GPF	ll	\$4,700	\$2,000
JIM	SAMARGIA		BIRCH POINT RD	S	1	I	С			\$120
DONNA	FRISK		BIRCH POINT RD	S	1	US	GPF		\$15,000	\$120
DAVID	ERICKSON	6058	BIRCH POINT RD	S	2	US	GPF		\$15,000	\$120
S = Seasonal								Subtotal	\$332,000	\$98,140
YR = Year-Round								Contingency (20%)	\$66,000	φ00, 1 - 0
Dwelling Type I = > 800 sf/bdrm						Subtotal	\$398,000			
	Type I = > 800 st/bdrm Type II = 500 to 800 sf/bdrm				\$398,000 \$80,000					
e 71								Engr, Insp. Legal	Φου,υυυ	
Dwelling Type III = < 500 sf/bdrm			Total Fathwated	¢ 470.000	*00 1 10					
System Type I = MR $(3/11)^{-1}$								Total Estimated	\$478,000	\$98,140
System Type II = MR (3/11)										
System Type III = MR (3/11)										
System Type IV = MR (3/11) 7080.2350							20 Year Present Worth		

System Type V = MR (3/11) 7080.2400 O = Other US = Unknown Subsurface C = Compliant GPF = Groundwater Protection Failure UN = Unnecessary NF = Not Feasible Y = Yes Q = Questionable N = No

Initial Capital Cost Annual O&M Cost

Total Estimated Present Worth

Discount rate

Cost	Present Worth
\$478,000	\$478,000
\$98,140	\$1,236,000

\$1,714,000

4.875%

Table A-2 Birch Point Road Alternative 2 Costs (under St. Louis County Rules)

					Existing O	nsite System	Future F	Replacement Onsite Sys	
First Name	Last Name	Mail Road Name	2012 Use	Bedrooms	Туре	Status	Type (3-bdrm Type I Dwelling)	Construct Cost	Operation Cost, \$/y
RHNT	EID	5957 BIRCH POINT F	D S	3	US	GPF	II	\$4,700	\$2,000
NIEL	GLIBBERY	5958 BIRCH POINT F		1	US	GPF	II	\$4,700	\$120
LLIAM	ANGST	5959 BIRCH POINT F	D S	1	II	С	II		\$2,000
RK/ALLYSON	BERGMAN	5963 BIRCH POINT F	D YR	1	US	GPF	II	\$7,200	\$8,900
HN J.	HOCEVAR	5965 BIRCH POINT F	D YR	3	IV	С	IV		\$120
OMAS	SEYMOUR	5969 BIRCH POINT F	D YR	2	US	GPF	II	\$7,200	\$8,900
UGLAS E	MALNATI	5971 BIRCH POINT F	D S	1	0	GPF	II	\$4,700	\$2,000
NN	SLORDAL	5977 BIRCH POINT F		3	I	GPF	111	\$24,000	\$120
LLIAM	JOPKE	5978 BIRCH POINT F		3	I	GPF	II	\$7,200	\$8,900
NIEL	THOMPSON	5979 BIRCH POINT F		3	V	С	V	÷)	\$120
RY	LANE	5980 BIRCH POINT F		2	i	GPF	II.	\$7,200	\$8,900
MES	FREEMAN	5982 BIRCH POINT F		2	Ó	GPF		\$7,200	\$8,900
NNIS A	ANDERSON	5984 BIRCH POINT F		1	US	GPF		\$4,700	\$2,000
MES	DOYLE	5986 BIRCH POINT F		1	0	GPF	 II	\$4,700	\$2,000
CHAEL	NASH	5988 BIRCH POINT F		3	U U	GPF		\$7,200	\$8,900
CHARD	RESCH	5900 BIRCH POINT F		3	1	GPF		\$24,000	\$120
RK	BOBEN	5992 BIRCH POINT F		3	1	GPF	111	\$18,000	\$120
CHARD	PLYS	5994 BIRCH POINT F		3	1	GPF	1	\$7,200	\$8,900
MES	HODGE	5998 BIRCH POINT F		3	1	GPF	1	\$18,000	\$120
ANNE	PEARSON	6000 BIRCH POINT F		5	0	GPF	1	\$4,700	\$120
DE	LEDINGHAM	6002 BIRCH POINT F		2	IV			φ4,700	
DE OMAS				2		C	II II		\$8,900 \$8,900
	KURTOVICH	6004 BIRCH POINT F		-		C		¢40.000	\$8,900
ETT	MCLEAN	6010 BIRCH POINT F		2	1	GPF	III 	\$18,000	\$120
RK	MELANDER	6014 BIRCH POINT F		3	1	GPF		\$7,200	\$8,900
MES T.	SODEMAN	6016 BIRCH POINT F		2	1	GPF		\$7,200	\$8,900
IC	RUSTAD	6020 BIRCH POINT F		2	1	GPF	III	\$18,000	\$120
RK	GALLUP	6026 BIRCH POINT F		3	II	С	ll		\$2,000
ROL	ANDERSON	6036 BIRCH POINT F		3	I	GPF	II	\$7,200	\$8,900
RDON/TAMMI	BEIER	6040 BIRCH POINT F		1	US	GPF	II	\$4,700	\$2,000
RILYN E	MORRIS	6044 BIRCH POINT F		1	I	GPF	II	\$4,700	\$2,000
AN	ADAMS	6048 BIRCH POINT F		2	II	GPF	II	\$4,700	\$2,000
1	SAMARGIA	6050 BIRCH POINT F		1	I	С	III		\$120
NNA	FRISK	6054 BIRCH POINT F		1	US	GPF	I	\$18,000	\$120
VID	ERICKSON	6058 BIRCH POINT F	D S	2	US	GPF	l	\$18,000	\$120
- Seasonal							Subtotal	\$270,000	\$126,360
= Year-Round							Contingency (20%)	\$54,000	ψ120,000
elling Type I = > 800 sf/b	drm						Subtotal	\$324,000	
elling Type II = 500 to 80							Engr, Insp. Legal	\$65,000	
elling Type II = 500 to 80 elling Type III = < 500 sf/								ψ00,000	
stem Type I = MR (3/11)							Total Estimated	¢200.000	¢100 000
, ji							i otal Estimated	\$389,000	\$126,360
stem Type II = MR $(3/11)$									
stem Type III = MR $(3/11)$									
stem Type IV = MR $(3/11)$							20 Year Present Worth	o .	_
stem Type V = MR (3/11)	7080.2400							Cost	Present Worth
= Other							Initial Capital Cost	\$389,000	\$389

O = Other US = Unknown Subsurface C = Compliant GPF = Groundwater Protection Failure UN = Unnecessary NF = Not Feasible Y = Yes Q = Questionable N = No

Initial Capital Cost Annual O&M Cost

Total Estimated Present Worth

Discount rate

\$1,981,000

\$1,592,000

4.875%

\$126,360

Table A-3 Birch Point Road Alternative 3 Costs (under MPCA Rules)

							Existing O	nsite System	Future Replacement Onsite Syst			
First Name	Last Name	Mail	Road Name	2012 Use	Туре	Bedrooms	Туре	Status	Type (MPCA Existing Use)	Permitted Flow	Construct Cost	Operation Cost, \$/yr
BERHNT	EID	5957	BIRCH POINT RD	S	III	3	US	GPF	II	450	\$4,700	\$1,000
DANIEL	GLIBBERY	5958	BIRCH POINT RD	S	II	1	US	GPF	III		\$21,000	\$120
WILLIAM	ANGST	5959	BIRCH POINT RD	S	I	1	II	С	II	300		\$1,000
MARK/ALLYSON	BERGMAN	5963	BIRCH POINT RD	YR	П	1	US	GPF	II	300	\$7,200	\$4,500
JOHN J.	HOCEVAR	5965	BIRCH POINT RD	YR	I	3	IV	С	IV			\$120
THOMAS	SEYMOUR	5969	BIRCH POINT RD	YR	III	2	US	GPF	II	300	\$7,200	\$4,500
DOUGLAS E	MALNATI	5971	BIRCH POINT RD	S	III	1	0	GPF	III	300	\$21,000	\$120
LYNN	SLORDAL	5977	BIRCH POINT RD	YR	I	3	I	GPF	I		\$18,000	\$120
WILLIAM	JOPKE	5978	BIRCH POINT RD	YR	II	3	I	GPF	III	300	\$21,000	\$120
DANIEL	THOMPSON	5979	BIRCH POINT RD	YR	I	3	V	С	V			\$120
GARY	LANE	5980	BIRCH POINT RD	YR	II	2	I	GPF	I		\$15,000	\$120
JAMES	FREEMAN	5982	BIRCH POINT RD	YR	II	2	0	GPF	II	300	\$7,200	\$4,500
DENNIS A	ANDERSON	5984	BIRCH POINT RD	S	III	1	US	GPF	I	300	\$15,000	\$120
JAMES	DOYLE	5986	BIRCH POINT RD	S	III	1	0	GPF	II	300	\$4,700	\$1,000
MICHAEL	NASH	5988	BIRCH POINT RD	YR	Ш	3	I.	GPF	II	450	\$7,200	\$4,500
RICHARD	RESCH	5900	BIRCH POINT RD	YR	I	3	I	GPF			\$24,000	\$120
MARK	BOBEN	5992	BIRCH POINT RD	YR	III	3	I	GPF	I		\$18,000	\$120
RICHARD	PLYS	5994	BIRCH POINT RD	YR	II	3	I	GPF	II	450	\$7,200	\$1,000
JAMES	HODGE	5998	BIRCH POINT RD	YR	III	3	I	GPF	I		\$18,000	\$120
JEANNE	PEARSON	6000	BIRCH POINT RD	S	I	1	0	GPF	I		\$15,000	\$120
CADE	LEDINGHAM	6002	BIRCH POINT RD	YR	I	2	IV	С	IV			\$120
THOMAS	KURTOVICH	6004	BIRCH POINT RD	YR	I	3	III	С	II	450		\$4,500
BRETT	MCLEAN	6010	BIRCH POINT RD	YR	I	2	I	GPF	I		\$15,000	\$120
MARK	MELANDER	6014	BIRCH POINT RD	YR	III	3	I	GPF	II	450	\$7,200	\$4,500
JAMES T.	SODEMAN	6016	BIRCH POINT RD	YR	11	2	I	GPF	III		\$21,000	\$120
ERIC	RUSTAD	6020	BIRCH POINT RD	YR	I	2	I	GPF	I		\$15,000	\$120
KIRK	GALLUP	6026	BIRCH POINT RD	S	III	3	II	С	II	450		\$1,000
CAROL	ANDERSON	6036	BIRCH POINT RD	YR		3	I	GPF		450	\$24,000	\$120
GORDON/TAMMI	BEIER	6040	BIRCH POINT RD	S	II	1	US	GPF	I		\$15,000	\$120
MARILYN E	MORRIS	6044	BIRCH POINT RD	S	II	1	I	GPF	III	300	\$21,000	\$120
ALAN	ADAMS	6048	BIRCH POINT RD	S	II	2		GPF	II	300	\$4,700	\$1,000
JIM	SAMARGIA	6050	BIRCH POINT RD	S	П	1	I	С	I			\$120
DONNA	FRISK	6054	BIRCH POINT RD	S	I	1	US	GPF	I		\$15,000	\$120
DAVID	ERICKSON	6058	BIRCH POINT RD	S	III	2	US	GPF	I		\$15,000	\$120

S = Seasonal YR = Year-Round	St. Louis County Rules MPCA rules	6150 4500		
Dwelling Type I = > 800 sf/bdrm				
Dwelling Type II = 500 to 800 sf/bdrm				
Dwelling Type III = < 500 sf/bdrm		ISTS Capital Cost	\$384,300	\$36,000
System Type I = MR (3/11) 7080.2200		FAST unit cost for 5000 gpd	\$280,000	\$10,000
System Type II = MR (3/11) 7080.2250		Total Construct Cost	\$664,300	
System Type III = MR (3/11) 7080.2300		Engineering	\$100,000	
System Type IV = MR (3/11) 7080.2350		Total Capital Cost	\$764,000	\$46,000
System Type V = MR (3/11) 7080.2400				
O = Other				
US = Unknown Subsurface		20 Year Present Worth	_	
C = Compliant			Cost	Present Worth
GPF = Groundwater Protection Failure		Initial Capital Cost	\$764,000	\$764,000
UN = Unnecessary		Annual O&M Cost	\$46,000	\$579,000
NF = Not Feasible				
Y = Yes		Total Estimated Present Worth		\$1,343,000
Q = Questionable				
N = No		Discount rate	4.875%	